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Abstract

The linear stability of condensate film flowing on an inclined isothermal plate under action of gravity and turbulent

vapor flow was the subject of study. The cases of cocurrent and countercurrent flow of two phases were considered at an

arbitrary inclination of the plane. The first part of this work deals with stationary film flow. The impact of vapor flow

on the film is described by a given shear stress on the interface with account for the transverse mass flux due to phase

transition. The integral method gives the analytical solution for distribution of film thickness along the plane (with and

without account for film inertia) at different inclination angles. The second part of paper deals with linear stability of

stationary film flow. The fluctuation of shear stress on the surface was calculated using the quasilaminar model. The

two-wave equation for film thickness with phase transition and dispersion formulas were derived. The results of effect

of condensation on film stability are presented for a wide range of flow parameters.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The cooperative motion of gas flow and liquid film

takes places in different apparatuses operating in the

fields of power engineering and chemical technology.

The instability of interface surface has a tremendous im-

pact on heat and mass transfer, primarily due to forma-

tion of waves, turbulization, droplet separation, and

formation of dry spots. Many of research papers were

devoted to problem of linear and nonlinear stability of

a free falling liquid film [1–8]. However, the systematic

study of this problem with consideration for phase tran-

sition was initiated only in 1970s. The papers [2–6] deal

with study of conditions for wave formation on a sur-

face of the falling film and they prove that, although
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the mass flux to interface has a serious effect stability,

the critical Reynolds numbers are too small and almost

everywhere the condensate film is unstable. The conclu-

sion is that condensation process gain stability to film

flow and evaporation destabilize the film flow. The inte-

gral method [7] was applied to study of stability of ver-

tical condensate film as function of dimensionless

parameters that characterize the physical properties of

liquid and vapor. Two different mechanisms of mass flux

impact on interface were described. The first mechanism

(stabilization of film flow) takes place due to reduction

in the film kinetic energy because of attaching of addi-

tional mass of condensate. The second mechanism

works due to destabilizing effect of reactive force on

the interface this effect is visible only at high intensities

of phase transition.

The process of wave formation in cooperative gas-

liquid flow was studied in a less extend. The existence
ed.



Nomenclature

Cf drag coefficient

cp specific heat of liquid

g gravitational acceleration

h film thickness

H dimensionless perturbations of thickness

j condensation mass flow

k wave number

L latent heat

p pressure

p 0 dimensionless perturbations of pressure

Q dimensionless perturbations of flow rate

q flow rate per width unit of the film

t time

Ts vapor saturation temperature

TW wall temperature

T liquid temperature

us film surface velocity

V vapor velocity

u,v velocities components

x,y coordinates

Dimensionless groups

Ku = L/cp(Ts � TW) Kutateladze number

Re ¼ gh3m=3m
2 film Reynolds number

We ¼ r=qhmu2m Weber number

Rv = V/um, Rm = V(3/mg)1/3 vapor velocity

rm = CfqvRmjRmj/2q shear stress

Fi = r3/q3gm4 film number

Greek symbols

q,qv liquid and vapor density

k liquid thermal conductivity

m liquid kinematic viscosity

l,lv liquid and vapor dynamic viscosity

ss shear stress at the interface

sW shear stress at the wall

sf = Cf Æ qvVjVj/2 contribution to the shear stress

caused by friction of moving vapor

e ¼ 1

Ku � Pr condensation intensity

r surface tension

h inclination angle to horizon

s 0 dimensionless perturbations of shear stress

s = 3 Æ sf/qghm dimensionless shear stress

g = y/h dimensionless coordinate

Subscripts

W wall

m scale

f friction due to the moving vapor

v vapor

s on the interface

n neutral

max maximal growth

o undisturbed
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of shear stress on film surface due to gas motion is sig-

nificant in formation of waves (even without phase tran-

sition). In [9], solutions of Orr–Sommerfeld equations

for gas and liquid flows were applied for study of wave

formation in film flow with regard to phase transition

and shear stress on the film surface at different inclina-

tion angles of the plane. The case of cocurrent vapor

flow was considered only. The problem of wave genera-

tion on the interface in the conjugated statement creates

big mathematical difficulties. However, this problem can

be simplified for many cases if we use several assump-

tions about properties of gas and liquid. This approach

takes the surface of liquid as rigid and steady. Then one

can calculate independently the gas motion along a wavy

surface. The impact of gas on growth of small distur-

bances in the film thickness is expressed through the

given amplitudes of fluctuation for tangential and nor-

mal stress on the film. The amplitudes of stress fluctua-

tion were calculated in [10] from solution of the problem

of gas flow over the wavy surface based on the quasila-

minar model of turbulent gas flow [11,12]. Those results

were used in [13,14] for study of stability of vertical and

horizontal gas-film flow based upon Orr–Sommerfeld

equations. In [15], the quasilaminar model of turbulent
gas flow was employed in the integral method for anal-

ysis of stability of joint gas-film flow; a two-wave equa-

tion for film thickness was derived. The dispersion

relations (obtained from this two-wave equation) de-

scribe two different wavy modes. One of these modes

may produce instability, and another is responsible for

decay. In [16], integral method and Orr–Sommerfeld

equations were applied for analysis of stability of gas-

film flow without phase transition; the results of these

two approaches have been compared.

The objective of this paper is study of impact of con-

densation of moving vapor on linear stability of film

flow using the approaches of integral method and quas-

ilaminar model.
2. Problem statement

Let us introduce the Cartesian coordinate system,

with axis Ox directed along the plane and axis Oy

normal to the plane, which is inclined at angle h to

horizon (Fig. 1); let us consider the joint motion of

vapor and condensate film at the following assump-

tions:



Fig. 1. Scheme of flow.
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1) Plate temperature TW = const.

2) The interface temperature is equal to the temperature

of saturated vapor Ts = const.

3) The condensate film brings the main contribution to

thermal resistance.

4) The vapor fills all space above the film; the vapor

velocity is V = const, which is much smaller than

the sonic velocity; we neglect the vapor pressure

gradient.

5) The ratio of thickness of vapor boundary layer to the

film thickness is small, i.e.,
qv � l
q � l � 1.

In this case the film flow is considered independently

of the vapor flow. The influence of vapor flow on the film

is taken into account through mass flux and through nor-

mal and tangential shear stress on the interface.

6) We neglect the contribution of the reactive force

caused by phase transition into the normal stress.

Using this framework for problem statement we can

present (as it was done in [17]) the shear stress on the

film surface in the form ss = sf + j Æ (V � us). Here

sf = Cf Æ qvVjVj/2 is the contribution to the shear stress

caused by friction of moving vapor (the drag coefficient

Cf = const must be given); j Æ (V � us) is the contribution

of mass flux through interface into the shear stress,

j ¼ � k
L
� oT
oy

����
����
y¼h

is the mass flux through the area unit

of interface (caused by phase transition), k is the thermal

conductivity, and L is the latent heat of phase transition.
3. Integral equation of momentum for a film with phase

transition

Let us consider the motion equation for a film in the

approximation of boundary layer, with assumption of

low curvature of the film surface [18]:
ou
ox

þ ov
oy

¼ 0

ou
ot

þ u
ou
ox

þ v
ou
oy

¼ g sin h � 1

q
op
ox

þ m
o2u
oy2

ð1Þ

0 ¼ � 1

q
op
oy

� g cos h ð2Þ

Here the velocity components u,v have to satisfy the

boundary condition ujy=0 = 0,vjy=0 = 0 on the plane. In

Eq. (2), the vertical velocity component v is assumed

infinitely small. By integrating the second Eq. (1) over

the film thickness and transforming it with use of the

first Eq. (1) the integrals in the left part (as in [18]), we

obtain the momentum equation in the form:

oq
ot

þ oJ
ox

� us �
oh
ot

þ us
oh
ox

� vs

� �

¼ ss � sW
q

� 1

q

Z h

0

op
ox

dy þ g � h � sin h ð3Þ

Here J ¼
R h
0
u2 dy, q ¼

R h
0
udy is the liquid flow rate,

sW ¼ l
ou
oy

jy¼0 is the shear stress on the plate,

ss ¼ l
ou
oy

jy¼h ¼ sf þ j � ðV � usÞ ð4Þ

is the shear stress on the film surface. The pressure in the

film can be found from the Eq. (2) with account of the

boundary condition on the film surface: pjy=h =
ps � r Æ hxx

p ¼ ps þ qg cos h � ðh� yÞ � r � hxx ð5Þ

Here ps is the vapor pressure. The following kinematic

condition takes place on the film surface:

oh
ot

þ us
oh
ox

� vs ¼ j=q ð6Þ

With account for (4)–(6), the momentum equation for a

film takes the form:

oq
ot

þ oJ
ox

¼ sv � sW
q

� h
q
ops
ox

þ gh � sin h � cos h
oh
ox

� �
þ rh

q
o3h
ox3

ð7Þ
Here

sv ¼ sf þ j � V ð8Þ

The further simplification of (7) is possible only if we

will prescribe the velocity profile in the film (not self-

similar):

u=us ¼ ð2� AÞ � g þ ðA� 1Þ � g2; where

A ¼ ssh=lus; g ¼ y=h ð9Þ

and temperature profile in the film: T = TW +

(Ts � TW) Æ g (linear approximation), which satisfies the

boundary conditions Tjy=0 = TW,T jy=h = Ts.



1042 S.P. Aktershev, S.V. Alekseenko / International Journal of Heat and Mass Transfer 48 (2005) 1039–1052
Then j ¼ � k
L
� oT
oy

����
����
y¼h

¼ 1

Ku � Pr �
l
h
�, where Ku Æ =

L/cp(Ts � TW) is the Kutateladze criterion, and Pr = m/a
is the Prandtl number. One can easily formulate from

(9) the velocity on the film surface through the para-

meters of flow rate and shear stress sv:

us ¼ ð3q=2hþ svh=4lÞ=ð1þ e=4Þ ð10Þ

Here e ¼ j � h
l

¼ 1

Ku � Pr is the parameter describing the

intensity of phase transition. For most of liquids,

Pr ffi 1 � 10, so at Ku� 1 we have parameter e � 1.

The exception is liquid metals, since they have

Pr ffi 10�2. For this reason, e � 1 even at Ku ffi 100.

We can find from (9) the shear stress on the plate

sW ¼ K1 �
3lq

h2
� sv

2

� �
ð11Þ

Putting (11) into (7), we finally obtain the equation for

film momentum:

oq
ot

þ oJ
ox

¼ K2 �
3sv
2q

� K1 �
3qm

h2
� h

q
ops
ox

þ gh � sin h � cos h
oh
ox

� �
þ rh

q
o3h
ox3

ð12Þ

where K1 ¼
1þ e=2
1þ e=4

, K2 ¼
1þ e=3
1þ e=4

.

Note that in undisturbed flow we can usually neglect

the inertia term
oJ
ox

in the left part of (12), and this is jus-

tified at e � 1. However, we will keep this component to

apply the equation for film flow of liquid metals that

have e � 1. Using the velocity profile (9), we can calcu-

late J ¼
R h
0
u2 dy. After tedious transformations, we

obtain

J ¼ F 0 �
6 � q2
5 � h þ F 1 �

4 � q � h � sv
5 � l þ F 2 �

2 � s2v � h3

15 � l2
ð13Þ

Here F 0 ¼ 1� e

ðe þ 4Þ2
, F 1 ¼

1� e=4

ðe þ 4Þ2
, F 2 ¼

1

ðe þ 4Þ2
.

Substituting sv ¼ sf þ
e � l � V

h
into (13), we separate in

(13) the terms with parameter e:

J ¼ F 0

6q2

5h
þ F 1

4qhsf
5l

þ F 2

2s2f h
3

15l2

þ 2eV
15

6F 1qþ 2F 2h
2sf=l þ e � F 2hV

� �
ð14Þ

The terms with e disappear if it is no phase transition.

For immovable vapor we have in (14) only the first term.

Let us transform the kinematic condition (6) using

the first equation from (1) to the form

oh
ot

þ o

ox

Z h

0

udy ¼ j
q

ð15Þ

Substituting j = e Æl/h to the right part of (15), we rewrite

it in the form
oh
ot

þ oq
ox

¼ e � m
h

ð16Þ

The set of equations (12) and (16) for functions q(x, t),

h(x, t) describes the condensate film flow along an iso-

thermal plane under action of gravity and turbulent va-

por flow with a fixed velocity V.
4. Stationary (undisturbed) flow of condensate

Let us introduce the scale of film thickness he = (m2/
g)1/3, the scale of velocity ue = (mg)1/3, dimensionless vari-

ables h/he, q/m, x/he. Keeping the previous notations for

flow rate, thickness and coordinates, let us consider sev-

eral specific cases of condensate stationary flow (when

the surface tension is negligible compared to gravitation

and impact from vapor stream). The impact of vapor on

the film is taken into account through a given constant

shear stress sf on the film surface.
4.1. Stagnant vapor. Flow of condensate on a vertical

plate with regard for film inertia

Eqs. (12) and (16) take the form

F 0 �
6

5
h2

d

dx
q2

h

� �
¼ h3 � 3K1q

h
dq
dx

¼ e

ð17Þ

System (17) has an analytical solution:

q ¼ h3=3 � ðK1 þ 2F 0e=3Þ;

h ¼ h4ð0Þ þ 4 � e � x � ðK1 þ 2F 0e=3Þ
� �1=4 ð18Þ

Unlike the classic solution by Nusselt [19] in (18), here

the film inertia is taken into account through the coeffi-

cient (K1 + 2F0e/3), which differs from one.

4.2. Stagnant vapor. Flow on the bottom side of a

horizontal plate with regard for film inertia.

In this case the Eqs. (12) and (16) take the form

F 0 �
6

5
h2

d

dx
q2

h

� �
¼ h3

dh
dx

� 3K1q

h
dq
dx

¼ e

ð19Þ

Transforming additive
d

dx
q2

h

� �
¼ 2q

h
dq
dx

� q2

h2
dh
dx

¼ 2eq

h2

� q2

h2
dh
dx

and excluding the variable x, we reduce the sys-

tem (19) to equation

3h � q � ðK1 þ 4F 0e=5Þ �
dq
dh

¼ e � F 0 �
6

5
q2 þ h3

� �
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with solution

q2 ¼ 2e � h3

9K1 þ 24F 0e=5
� B � hN ; where

N ¼ 4F 0e=ð5K1 þ 4F 0eÞ < 1 ð20Þ
The constant B we can pick up from condition q = 0 at

h = h(0). So we obtain

q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e � h3ð0Þ

9K1 þ 24F 0e=5

s
~h
3 � ~h

N

 �

ð21Þ

where ~h ¼ h=hð0Þ P 1 is the film thickness normalized

to h(0). Then we substitute (21) into the second equation

of system (19) and integrate over parts:
R
hdq ¼

½hq� �
R
qdh ¼ e

R
dx, and obtain the dependency of

the film thickness on variable ~x ¼ x=hð0Þ:

~h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~h
3 � ~h

N
q

�
Z ~h

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h03 � h0N

p
dh0

¼ 3 � ~x �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e � ðK1 þ 8F 0e=15Þ=2h3ð0Þ

q
ð22Þ

In asymptotic case ~h � 1 we have ~h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~h
3 � ~h

N
q

� ~h
5=2

,R ~h
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h03 � h0N

p
dh0 � 2

5
~h
5=2

. Then from (22) we obtain

~h ¼ 5 � ~x �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e � ðK1 þ 8F 0e=15Þ=2h3ð0Þ

q� �2=5

The graphs of film thickness calculated according to (22)

at h(0) = 1 for different e are plotted in Fig. 2. The flow

pattern is as follows: the film thickness is minimal in the

center of the plate at x = 0 (while this, we have
dh
dx

ð0Þ ¼ 0, and velocity at the surface of film is

us(0) = 0); it growths symmetrically towards the periph-

ery, and the condensate spreads to the plate margins due

to gravitation force.
Fig. 2. Film thickness on the bottom side of horizontal plate.
4.3. Stagnant vapor. Flow along the upper surface of

horizontal plate with regard for film inertia

Eq. (12) is as follows:

F 0 �
6

5
h2

d

dx
q2

h

� �
¼ �h3

dh
dx

� 3K1q

if we consider the second equation from the set (19), it

can be transformed to the view 3h � q � ðK1 þ 4F 0e=5Þ�
dq
dh

¼ e � F 0 �
6

5
q2 � h3

� �
. Its solution is

q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e � h3ð0Þ

9K1 þ 24F 0e=5
~h
N � ~h

3

 �s

ð23Þ

Here ~h ¼ h=hð0Þ 6 1; the symbols and boundary condi-

tions are the same as in the previous case. Solution (23)

exists at ~h� 6 ~h 6 1, where ~h� ¼ ðN=3Þ1=ð3�NÞ
is the point

of maximum q(h), where
dq
dh

! 0, while that
dh
dx

jh¼h�
!

1. The formula for film thickness as a function of vari-

able ~x ¼ x=hð0Þ becomes the following:

~h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~h
N � ~h

3

q
�
Z ~h

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h0N � h03

p
dh0

¼ 3 � ~x �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e � ðK1 þ 8F 0e=15Þ=2h3ð0Þ

q
ð24Þ

If at e � 1 in (20) we take N = 0, then ~h
N ¼ 1. Substitut-

ing (23) into the second Eq. (19), we obtain the solution

for film thickness:Z 1

~h

n3ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n3

p dn ¼
ffiffiffiffiffiffiffiffiffiffiffi
2e

h3ð0Þ

s
� ~x

This coincides (taking into account the scaling formal-

ism) with the solution obtained in [20]. The dimension-

less film thickness at the plate edges calculated

according to (24) is determined unambiguously by value

e,h(0), unlike [20] where it was a free parameter. The

charts of film thickness, calculated according to (24) at
Fig. 3. Film thickness on the top side of horizontal plate.



Fig. 5. Film thickness on the vertical plate (countercurrent

flow).
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h(0) = 1 for different e are plotted in Fig. 3. The flow pat-

tern in this case is the following: the film thickness is

maximal in the plate center (for x = 0) and decreases

symmetrically towards the periphery. The condensate

from the center spreads to periphery under gravity ac-

tion and at h/h(0) = (N/3)1/(3�N), where
dh
dx

! 1, the film

falls as a free jet from the plate edges.

4.4. Moving vapor. Flow without film inertia

For a regular liquid (Pr ffi 1 � 10) we can neglect the

inertia term in the left part of (12) and the small term
dh
dx

in the right part. We also take K1 = 1, K2 = 1 and bring

the equation to the form

q ¼ 1

2
ðre � h2 þ e � RehÞ þ

1

3
h3 sin h ð25Þ

Here Re = V/ue, re ¼ sf=qu2e ¼ Cf
qv
2q Re j Re j.

Substituting (25) into (16) and integrating over x, we

obtain the formula for film thickness as a function of

coordinate:

1

3
re � h3 þ

1

4
ðe � Reh

2 þ h4 sin hÞ ¼ e � x ð26Þ

Here the integration constant was chosen to provide

h(0) = 0. Figs. 4 and 5 present the dependency (26) for

water vapor at Cf = 3 Æ 10�3, e = 0.01 and different val-

ues of Re for cocurrent and countercurrent flow of

vapor. In case V > 0 the direction of vapor flow and

liquid flow coincides with the direction of gravitation

(Re > 0,re > 0), and film thickness increases along the

axis Ox. The asymptotic solutions of (26) are:

x ! 0 hðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 � x=Re

p
x ! 1 hðxÞ ¼ ð4e � x= sin hÞ1=4

ð27Þ

For the case of V < 0 when the vapor flow direction is

opposite to gravity (Re < 0, re < 0), Eq. (26) gives two

branches of h(x) at x < 0. For the low branch hl(x), con-
Fig. 4. Film thickness on the vertical plate (cocurrent flow).
densate moves upwards the plane overcoming gravity ac-

tion due to vapor flow. The film thickness increases in the

same direction and at point of branching x = x* it

reaches the top level h� ¼ j re j þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2e þ 2e j Re j sin h

p� �
=

2 sin h. While that,
dh
dx

jx¼x�
! 1. For the upper branch

hup(x) > h* and the film thickness increases with coordi-

nate x.

It follows from (25) that q > 0 at h > h+, and q < 0 at

h < h+. Here hþ ¼ 3
4 sin h j re j þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2e þ 8

3
e j Re j sin h

q
 �
>

hupð0Þ. Thus for the upper branch and the range h* <

hup(x) < h+ the condensate moves upward driven by

the vapor flow, but for range hup(x) > h+ gravitation

dominates and the condensate is driven downwards.
5. Stability of stationary condensate film flow

The use of a linear approximation for the tempera-

ture profile in the film for stability analysis indicates that

the typical disturbance frequency x satisfies the condi-

tion x � k/(qcph
2), i.e., the temperature profile has the

time to adjust to the disturbed film thickness.

For analysis of flow stability, we can choose the scales

size equal to the film thickness hm at the coordinate x,

where stability is studied. Let us introduce the scales

for velocity um ¼ gh2m=3m, time tm = hm/um, flow rate

qm = hmum, stress pm = qghm/3, and make up the dimen-

sionless variables x/hm, u/um, q/qm, t/tm, h/hm ps/pm,

J=u2mhm, keeping the old symbols. Here we assume that

Prandtl number Pr ffi 1 � 10 (regular liquid), so at

Ku� 1 theparameter e � 1andK1 = 1,K2 = 1. Indimen-

sionless variables the Eqs. (12) and (16) take the form

oq
ot

þ oJ
ox

¼ 3

Re
h � sin h � cos h

oh
ox

� �
þ 1

2
s þ eRv

h

� ��

� q

h2
� h
3

ops
ox

�
þ We � h � o

3h
ox3

ð28Þ
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oh
ot

þ oq
ox

¼ e
Re � h ð29Þ

Here Re ¼ gh3m=3m
2 is the Reynolds number, We ¼

r=qhmu2m ¼ ð3FiÞ1=3=Re5=3 is Weber number, Fi = r3/
q3gm4 is the film number, s = 3 Æ sf/qghm is the dimension-

less shear stress, Rv = V/um = Rm/Re
2/3 and Rm = V(3/

mg)1/3 are dimensionless vapor velocities,

J ¼ 6 � q2
5 � h þ q � h � s

20
þ s2 � h3

120

þ e � Rv

20
qþ h2s

3
þ e � Rv � h

6

� �
:

For undisturbed flow, the system of equations (28) and

(29) for variables h0(x), q0(x) takes the form:

q0 ¼
1

2
ðr � h20 þ e � Rvh0Þ þ h30 sin h

dq0
dx

¼ e
Re � h0

ð30Þ

Here subscript ‘‘0’’ means the undisturbed state, r = 3sf0/
qghm = rm/Re

1/3, rm = CfqvRmjRmj/2q is the dimension-

less shear stress on the interface. During formulation

of q0 in (28), the terms with derivatives
dJ 0

dx
,
dh0
dx

,
d3h0
dx3

were discarded, since they have infinitesimal order

O(e),O(e),O(e3). This means that at e � 1 the film inertia

and surface tension are negligible in comparison with

gravitation and friction. The remained terms have the

infinitesimal order O(1).

The term eRv/h was kept because for a typical vapor

velocity V ffi 10m/c we have Rm ffi V(3/mg)1/3 ffi 103, so

even at e ffi 10�3 � 1 the parameter eRv ffi 1. Taking

the first of equations from (30) and putting it into the

second provides us the following:
dh0
dx

¼ e

Re � h0ð3h20 sin h þ r � h0 þ e � Rv=2Þ
ð31Þ

We assume that we study stability far away from the val-

ues of h0(x) which make the divider in (31) turn into zero

(at h0 = 0 and at h0 ¼ j r j þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 6e j Rv j sin h

p
 �
=

6 sin h for the countercurrent flow).

5.1. Equations for small disturbances of stationary flow

Let us consider the linearization (28), (29) relative to

small disturbances of stationary flow, assuming decom-

position h(x, t) = h0 Æ (1 + H(x, t)),q(x, t) = q0 + Q(x, t),

s = r Æ (1 + s 0),ps = ps0 + r Æ p 0, where H, Q, s 0, p 0 are

small disturbances, and undisturbed parameters

h0,q0 � O(1). After linearization we obtain

oQ
ot

þ oDJ
ox

¼ 3

Re
h0 sin h þ 2q0

h20
� eRv

2h0

 !
H � Q

h20
þ rs0

2

 

� rh0
3

op0

ox
� h20 cos h

oH
ox

!
þ Weh20

o
3H
ox3

h0
oH
ot

þ oQ
ox

¼ � e � H
Re � h ð32Þ
0

In (32) we also discarded the terms with derivatives
dh0
dx

,
d3h0
dx3

having the order O(e), O(e3). Here DJ is the linear

part of disturbance for value J:

DJ ¼ oJ
oh

� �
0

h0 � H þ oJ
oq

� �
0

Qþ oJ
os

� �
0

r � s0

¼ �a1 � H þ 2a2 � Qþ a3 � r � s0

a1 ¼ � oJ
oh

� �
0

h0 ¼
6q20
5h0

� q0rh0
20

� r2h30
40

� eRvh0
30

r � h0 þ
e � Rv

4

� �

2a2 ¼
oJ
oq

� �
0

¼ 12q0
5h0

þ 1

20
ðr � h0 þ e � RvÞ

a3 ¼
oJ
os

� �
0

¼ q0h0
20

þ h20
60

ðr � h0 þ e � RvÞ ð33Þ

Unlike the case of film without phase transition, here we

have coefficients a1, a2, a3 depending on coordinate x.

Calculating the derivative
oDJ
ox

in the left part of Eq.

(32), we obtain

oDJ
ox

¼ �a1
oH
ox

þ 2a2
oQ
ox

þ a3 � r �
os0

ox
� H

da1
dx

þ 2Q
da2
dx

þ s0 � r � da3
dx

ð34Þ

Derivatives from coefficients a1, a2, a3 over coordinate

x, found with the second equation from (30):

daj

dx
¼ daj

dq0
� dq0
dx

¼ oaj

oq0
þ oaj

oh0

dh0
dq0

� �
e

Reh0
, j = 1,2,3 have

the order O(e) and we can disregard them. Here
dh0
dq0

¼
1

ð3h20 sin h þ r � h0 þ e � Rv=2Þ
ffi Oð1Þ.

Substituting (34) into (32), we write down the equa-

tions in the form

oQ
ot

� a1
oH
ox

þ 2a2
oQ
ox

þ a3r
os0

ox

¼ 3

Re
H � A� Q

h20
þ rs0

2
� rh0

3
� op

0

ox
� h20 cos h

oH
ox

 !

þ Weh20
o
3H
ox3

h0
oH
ot

þ oQ
ox

¼ � e � H
Re � h0

ð35Þ

Here

A ¼ h0 sin h þ 2q0=h
2
0 � e � Rv=2h0 ð36Þ

Substituting the relations of quasilaminar model [10]

into the system (35), we obtain formulas linking the dis-

turbances in the shear stress with the disturbances in film

thickness:

p0 ¼ pRH þ pI
k
oH
ox

; s0 ¼ sRH þ sI
k
oH
ox

where k is the wavenumber, pR, sR, pI, sI are the real

and imaginary parts of complex amplitude of stress.
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Collecting the similar terms, we bring the equations (35)

to the form

oQ
ot

þ 2a2
oQ
ox

þ 3

h20Re
� Q ¼ 3 � c0

Re
H þ b

oH
ox

þ n0
o2H
ox2

þ We � h20
o3H
ox3

h0
oH
ot

þ oQ
ox

¼ � e � H
Re � h0

ð37Þ

Here

c0 ¼ Aþ r � sR=2; n0 ¼ �r � ða3sI=k þ pIh0=kReÞ

b ¼ a1 �
3 cos h � h20

Re
þ r � 3sI=2k � pRh0

Re
� a3sR

� �
ð38Þ
5.2. Two-wave equation

Let us find the solution of (37) in the form

H ¼ Ha expðikðx� ctÞ þ btÞ;
Q ¼ Qa expðikðx� ctÞ þ btÞ ð39Þ
where k is the wavenumber, c(k), b(k) are the phase

velocity and wave increment, Ha, Qa are the amplitudes

of disturbances. First we have to consider the asymptotic

solutions at dh0
dx � k � 1. This means that the wavelength

of disturbance is much less than the distance where the

film thickness changes (but still much higher than the film

thickness). In this case we take h0 as a slow-varying func-

tion, so during differentiation over x for the film thick-

ness and coefficients a1, a2, a3, b, c0, c1, c2, n0 can be

taken as constants (the rejected terms have the order

O(e)). Differentiation of first equation from (37) over x,

and second-over t produces the following:

o2Q
otox

þ 2a2
o2Q
ox2

þ 3

Reh20

oQ
ox

¼ 3c0
Re

oH
ox

þ b
o2H
ox2

þ n0
o3H
ox3

þ Weh20
o4H
ox4

h0
o2H
ot2

þ e
Re

oH
ot

¼ � o2Q
oxot

ð40Þ

Excluding from (40) Q(x, t) and neglecting the small

terms with order O(e)), we obtain one equation for dis-

turbance of film thickness:

h0
o

ot
þ c1

o

ox

� �
o

ot
þ c2

o

ox

� �
H

þ 3

Reh0

oH
ot

þ c0h0
oH
ox

� �
þ n0

o3H
ox3

þ Weh20
o4H
ox4

¼ 0 ð41Þ
Here c1;2 ¼ a2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22 � b=h0

p
.

The two-wave equation for a film without phase tran-

sition was obtained in [15]. The first wave operator in

(41) describes the dynamic waves moving with velocities

c1 and c2 which makes the main contribution at high Re.
The second wave operator describes a kinematic wave

moving with velocityc0h0, which makes the main contri-

bution at low Re. Unlike the case e = 0, the velocities

c0,c1,c2 are slow-varying function of coordinate x. As

parameter Re increases, the relative contribution of

kinematic wave reduces proportionally to
1

Re5=3
.

5.3. Dispersion relations

The flow stability has a local nature. At a given vapor

velocity and temperature load (given Rm, e), the change

in coordinate brings the change in local Re and, corre-

spondingly, in parameters Rv, r, We, that are included

to Eq. (37). Taking into account the chosen scale hm,

in (37), (38), (36), (33), (30) we assume h0 = 1. Substitu-

tion of (39) into (37) brings out the dispersion equation

b þ 3

Re
þ ikð2a2 � cÞ

� �
b þ e

Re
� ikc


 �

¼ �ik
3c0
Re

� n0k
2 þ ikðb� We � k2Þ

� �
ð42Þ

It follows from (42) that at k = 0 b(0) = �e/Re or

b(0) = �3/Re, i.e., the long-wave disturbances are stable

for both modes, unlike the case of film without conden-

sation. Taking separately out from (42) its real and

imaginary parts, we obtain the dispersion relations in

the form:

bRe
3

þ 1þ e=3
2

¼ � A0

2ða2 � cÞ
bRe
3

þ 1þ e=3
2

� �2

¼ kRe
3

� �2

ððc� a2Þ2 � B0Þ

þ 1� e=3
2

� �2

ð43Þ

Here A0 = c0 � a2(1 � e/3) � n0k
2Re/3, B0 ¼ a22 � bþ

We � k2.
Excluding from (43) the increment b, we obtain for

v = (c � a2)
2 the square equation:

v2 � v � ðB0 � S � ð1� e=3Þ2Þ � A2
0 � S ¼ 0, where S =

(3/2kRe)2, that gives us

v¼ B0�S � ð1�e=3Þ2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB0�Sð1�e=3Þ2Þþ4A2

0 �S
q� �

=2

c¼a2�
ffiffiffi
v

p
;

bRe
3

¼� 1þe=3
2

� �
� A0

2
ffiffiffi
v

p ð44Þ

The dispersion relations give us two wave modes that

have correspondence to signs (+,�) in formulas (44).

The first sign (sign ‘‘+’’) means that the main mode

may be unstable (positive increment), and the second

mode is stable always. For a film with condensation,

the dispersion relations can be solved analytically (same

as in [16]). All formulas at e = 0 transform into expres-

sions derived previously for a film without phase transi-

tion. Note that relations (43) are valid even for the case



Fig. 6. Critical Reynolds number upon the inclination angle of

the plate.
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of evaporation instead of condensation, i.e., for e < 0.

However, it would be wrong to assume that the effect

of evaporation is always opposite to the effect of conden-

sation—because parameter e gives nonlinear contribu-

tion into dispersion relationships. Although accepted

model is applicable for e < 0, the stability of evaporating

film requires special consideration and this is beyond the

sphere of this paper.

5.4. Neutral stability curve for stagnant vapor

Let us consider the condition b = 0 for neutral waves

with V = 0 (stagnant vapor). It follows from (43):

ð1þ e=3Þ2

4
¼ knRe

3

� �2 A0

1þ e=3

� �2

� a22 þ b� Wek2n

 !

þ ð1� e=3Þ2

4

c ¼ a2 þ
A0

1þ e=3
ð45Þ

Let us transform (45) into a biquadratic equation rela-

tive to the neutral wave number kn:

ð3FiÞ1=3k4n �MRe5=3k2n þ
3 � e
Re1=3

¼ 0

where M ¼ A0

1þ e=3

� �2

�a22 þ b. The solution is

kn¼ MRe5=3�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2Re10=3�12 � ð3Fi=ReÞ1=3e

q� �
1

2ð3FiÞ1=3

 !1=2

ð46Þ
The signs ‘‘+’’ and ‘‘�’’ in (46) correspond to upper and

lower branches of neutral curve. The critical Reynolds

number Rec, which marks the branching of the curve

is found from the condition M2 � ðRe11c =3FiÞ1=3 ¼ 12 � e.
For Re < Rec the film flow is stable for all values of wave

numbers. At e � 1 we obtain M � 3 � ðsin2h � cos h
Rec

Þ. So
Rec is found by the equation

Rec sin h ¼ ctgh þ 2ffiffiffi
3

p
ðRec sin hÞ5=6

e � 3Fi
sin h

� �1=3
 !1=2

ð47Þ

Eq. (47) may have one, two or three roots (depending on

parameter e), but only the biggest root has a physical

meaning, because only for it k2n > 0. If there is no phase

transition, it follows from (47) that Rec sin h ¼ ctgh. For
a vertical film we obtain from (47) Rec = (64Fi e3/9)1/11.
Relation (47) gives the numerical multipliers before the

right-part terms—they are slightly different from those

obtained in [6,9]. In particular, the critical Reynolds

number from [6] for a vertical film (note the scaling fac-

tors) is different from the result of (47) by factor of 0.90.

The formula derived from the Orr–Sommerfeld equation

[9] gives the Rec higher than (47) by factor of 1.22. The
difference must be due to assigned parabolic velocity

profile in the integral method.
6. Calculation results

Here we present the calculations for dispersion rela-

tions (44) for water vapor at Ts = 373K, Fi1/3 = 9800,

Cf = 3 Æ 10�3 (Cf is taken from [21]). Fig. 6 presents the

dependency of the critical Reynolds number (47) on

the inclination angle h at different e. The significant

dependency Rec(h) is explicit only at h � 0 and h � p.
For the film on the top surface (h � 0) the values of

Rec are much higher than for the same film at the back

surface (h � p), with gravitation producing the Ray-

leigh–Taylor instability.

6.1. Vertical film

The neutral curves are plotted in Fig. 7 for the case of

stagnant vapor at different values of e. To the left of this

curve the flow is stable, and it is unstable at the right.

With growth of parameter e the instability zone shrinks

(due to the long-wave boundary), i.e., condensation of

stagnant vapor stabilizes the film flow. At high Re the

neutral curves asymtotically approaches the appropriate

curve for the no-phase-transition film: at Re� Rec con-

densation of stagnant vapor weakly influence the stability

of film flow. For the moving flow, effect of condensation

on film stability depends on direction of vapor flow.

The dispersion curves b(k), c(k) for cocurrent vapor
flow at rm = 0.5 are plotted in Fig. 8. The increase in

parameter e brings the growth of phase velocity and wave

increment (with the exception of very low k). For the lat-

ter case, the growth of e increases the positive contribu-

tion of condensation into the shear stress on the

interface; the shear stress, as well as gravitation, increases



Fig. 7. Neutral curves for the vertical film (stagnant vapor).

Fig. 8. Dispersion curves for the vertical film (cocurrent flow).

Fig. 9. Neutral curves for vertical film (cocurrent flow).

Fig. 10. Dispersion curves for the vertical film (countercurrent

flow).
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the kinetic energy of film and feed up the small distur-

bances. Corresponding neutral curves are shown in Fig.

9. The growth in e brings out (for e P 10�2) to expansion

of instability zone (with the exception of the coordinate

origin). This effect of expansion of instability zone for
cocurrent gas-film flow (no phase transition) had been

marked out in [13,16]. Thus, for cocurrent flow, the con-

densation from vapor reduces the film stability.

For countercurrent vapor flow, condensation pro-

duces the opposite effect. The dispersion curve at
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rm = �0.5 is shown in Fig. 10. The growth in e decreases
the phase velocity and wave increment. For this case, the

range of instability of wave number is narrower than for

the cocurrent flow. The corresponding neutral curves are

plotted in Fig. 11. An increase in e makes the instability

zone narrower. The effect of condensation parameter on

the critical Reynolds number is plotted in Fig. 12 for dif-

ferent rm. For the countercurrent vapor flow the depen-

dency of Rec(e) is monotonic, unlike the case of

cocurrent vapor flow. Thus, usually the countercurrent

flow of condensate film and vapor is more stable than

the cocurrent flow at the same jrmj, Re. Note that for

the studied range of Re the neutral curve for moving

vapor (the same as for the cocurrent and for the counter-

current flows) is very different from the neutral curve

for film without phase transition. This means that stabil-

ity of condensate film flow depends more on film inter-

action with the turbulent vapor flow (and
Fig. 11. Neutral curves for the vertical film (countercurrent

flow).

Fig. 12. Critical Reynolds number for the vertical film.
condensation parameters), and less—on gravity. Figs.

13 and 14 present the plottings of dimensionless velocity

cmax/(mg)
1/3 for the maximal-growth wave as a function

of Re both for countercurrent and cocurrent vapor flow

at different values of e. For the cocurrent flow, this

velocity increases with e, but declines with e for counter-
current flow.

6.2. Horizontal film

The dispersion curves at rm = 0.5 for the film beneath

the horizontal plane is plotted in Fig. 15. The values of

phase velocity have a weak dependency on k at k < 0.1,

but depend significantly on parameter e. Neutral curves

for this case are shown in Fig. 16. With the growth of

condensation parameter e, the instability zone first

shrinks, but then it becomes larger, and Rec reduces.

The corresponding dependencies of Rec(e) for different

rm are plotted in Fig. 17. At low rm, the main contribution
Fig. 13. Velocity of maximum growth wave (cocurrent flow).

Fig. 14. Velocity of maximum growth wave (countercurrent

flow).



Fig. 15. Dispersion curves for the film on the bottom side of

horizontal plate.

Fig. 16. Neutral curves for the film on the bottom side of

horizontal plate.

Fig. 17. Critical Reynolds number for the film on the bottom

side of horizontal plate.

Fig. 18. Instability domain for the film on the top side of

horizontal plate at low Re.
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to film instability is made by the Rayleigh–Taylor insta-

bility, and phase transition stabilizes film flow. With a
higher vapor velocity, the instability of film is governed

by its interaction with the moving vapor. As parameter

e increases, condensation gives destabilization effect due

to a higher shear stress on the interface.

The effect of condensation on stability of a film flow-

ing on the top side of a plane is quite peculiar. The neu-

tral curves at rm = 0.5 are plotted in Figs. 18–20.

Without phase transition, at low rm the instability zone

looks like non-connected domains (two separate do-

mains). The first domain is a close-end patch at low

Re (Fig. 18), the second one is restricted by a open-

end curve (high Re, Fig. 19). With the growth of conden-

sation parameter e, the first domain shrinks and disap-

pears completely at e � 0.57 Æ 10�4, but the second

domain expands as a ‘‘tongue’’, stretched to the side of

low Re. For high values of rm, the domain of instability

forms one zone (Fig. 20). With the growth of parameter

e it shrinks drastically, but then at e P 10�2 it expands

to the side of small values of Re.



Fig. 19. Instability domain for the film on the top side of

horizontal plate at high Re.

Fig. 20. Instability zone at high rm.
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7. Conclusions

1. Both for moving and stagnant vapor the process of

condensation increases the stability of film flow in

the long-wave region.

2. Condensation stabilizes the film flow only for the case

of stagnant flow for all values of angle h and for the

countercurrent vapor flow. For the rest of cases, con-

densation effect on film stability is unambiguous. For

low values of condensation parameter e the instability
domain shrinks and the value of Rec becomes higher;

the ‘‘thin’’ film (low Re) becomes stable to distur-

bances with any wavelength. The further growth of

e makes the instability domain wider and it shifts to

low Re, and for a ‘‘thick’’ film (high Re) the conden-

sation always expands the range of wave number cor-

responding to instability.

3. The countercurrent flow of vertical condensate film

and vapor flow at jrmj � 1 is more stable than the

cocurrent flow at the same values of jrmj, Re.
4. With the vapor velocity increases, the impact of mov-

ing vapor and condensation becomes the key factors

contributing to film instability.
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